
© 2025 Journal of International Commercial Law and Technology; Volume: 6: Issue: 1| All Right Reserved 836 

 

Journal of International Commercial Law and Technology 
Print ISSN: 1901-8401 

 

Website: https://www.jiclt.com/  

  

Article  

Adaptive Reinforcement Learning for Smart City 

Traffic Optimization 
Article History: Abstract: Urban traffic congestion is a critical issue impacting 

travel time, fuel consumption, and air quality. Traditional 
traffic management systems rely on static rules and limited 
sensor feedback, which fail to adapt to dynamic and 
unpredictable conditions. This paper proposes an Adaptive 
Reinforcement Learning (ARL) approach for optimizing traffic 
signals within smart cities. The ARL model leverages 
continuous environmental feedback to adjust signal timing 
based on real-time vehicular flow. Simulations using a 
synthetic traffic network demonstrate that the proposed model 
reduces average waiting time by 28%, improves throughput by 
21%, and decreases CO₂ emissions by 16% compared to 
traditional fixed-time control. These results indicate that ARL 
is a promising direction for sustainable urban mobility. 
 
Keywords: Reinforcement Learning, Smart City, Traffic 
Optimization, Deep Q-Learning, Adaptive Systems, Intelligent 
Transportation. 

 
Name of Author: 
Dr. Latika Kharb1, Dr. Deepak Chahal2 
 
Affiliation:  
1,2Professor, Jagan Institute of Management 
Studies, Rohini, New Delhi  
 

Corresponding Author: 
Dr. Latika Kharb 
 
Email: latika.kharb@jimsindia.org  

 
How to cite this article: Kharb L, et al. 
Adaptive Reinforcement Learning for 
Smart City Traffic Optimization. J Int 
Commer Law Technol. 2025;6(1):836–840 
 
Received: 30-09-2025 
Revised:    16-10-2025 
Accepted:  27-10-2025 
Published: 12-11-2025 
 
©2025 the Author(s). This is an open access article 
distributed under the terms of the Creative Commons 
Attribution License 
(http://creativecommons.org/licenses/by/4.0 

 
 
 
 

  
 

 

INTRODUCTION 
Traffic congestion remains a major challenge in modern 

cities. Static and semi-adaptive systems, though efficient 

under predictable patterns, cannot cope with stochastic 

variations in vehicle density. Reinforcement Learning 

(RL) provides a self-learning framework where an agent 

interacts with its environment, receives feedback, and 

learns an optimal policy. 
This research introduces an Adaptive Reinforcement 

Learning (ARL) framework capable of dynamically 

tuning parameters according to real-time changes, 

ensuring stable and efficient control even under 

uncertain traffic conditions 

 

 

LITERATURE REVIEW: 
Recent studies have applied RL to traffic management 

with varying degrees of success. Van der Pol and 

Oliehoek (2016)demonstrated that Deep Q-Networks 

(DQN) outperform traditional Q-learning in non-linear 

traffic environments. Wei et al. (2018) introduced 

CoLight, a multi-agent RL approach for signal 

coordination. However, these methods often struggle 

with scalability and adaptability. Adaptive frameworks, 

as discussed by Genders and Razavi (2019), attempt to 

balance learning speed and stability. 
This paper builds upon these foundations by 

incorporating adaptive reward functions and policy 

update rates that self-adjust according to congestion 

intensity. 

 
 
 

METHODOLOGY: 
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Problem Formulation 

Each traffic intersection is modeled as an RL agent. The state (S) includes queue lengths, waiting times, and neighboring 

intersection statuses. The action (A) represents the green-light duration for each lane direction. The reward (R) penalizes 

vehicle delays and rewards higher throughput. 

 

Adaptive Reinforcement Learning Model 

The ARL model modifies traditional Q-learning using an adaptive learning rate (α) and reward scaling: 

 

Simulation Setup 

• Tool Used: SUMO (Simulation of Urban MObility) 

• Network: 4×4 intersection grid 

• Vehicle Input: 500–1500 vehicles/hour/lane 

• Comparison: Fixed-time, Conventional Q-Learning, Proposed ARL 

 

Results and Analysis 

Model Avg. Waiting Time (s) Throughput (veh/hr) CO₂ Emission (g/km) 

Fixed-Time 72.4 820 140.6 

Q-Learning 56.8 960 126.3 

ARL (Proposed) 52.1 1160 118.0 

Table 1: Performance comparison of traffic control methods. 

 

Analysis: 
As shown in Table 1, the proposed ARL method achieves a 28% reduction in waiting time compared to fixed-time control 

and 8% improvement over conventional Q-Learning. Figure 1 (below) shows the cumulative reward convergence, 

demonstrating faster stabilization with ARL due to dynamic adaptation. 

 
Figure 1: Average Waiting Time by Model 
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Figure 2: Throughput Comparison 

 
 

Figure 3: CO₂ Emission by Model 

 
Figure 4: Cumulative Reward Convergence Curve 
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DISCUSSION: 
The results confirm that adaptability in learning rate and 

reward scaling enhances convergence speed and 

performance stability. Unlike static RL, ARL maintains 

efficiency during unexpected traffic surges. The 

scalability to larger networks is promising, though 

further optimization is needed to reduce computational 

cost in multi-agent scenarios. 
 

CONCLUSIONS: 
This study demonstrates that Adaptive Reinforcement 

Learning significantly improves traffic flow and reduces 

congestion. Future work will focus on: 

• Multi-intersection cooperative learning. 

• Integration with real-time IoT sensor data. 

Deployment on edge-AI platforms for real-time 

inference. 
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