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Traffic Optimization

Article History: Abstract: Urban traffic congestion is a critical issue impacting
travel time, fuel consumption, and air quality. Traditional
traffic management systems rely on static rules and limited
sensor feedback, which fail to adapt to dynamic and
unpredictable conditions. This paper proposes an Adaptive
Affiliation: Reinforcement Learning (ARL) approach for optimizing traffic
L2Professor, Jagan Institute of Management | signals within smart cities. The ARL model leverages
Studies, Rohini, New Delhi continuous environmental feedback to adjust signal timing
based on real-time vehicular flow. Simulations using a
synthetic traffic network demonstrate that the proposed model
reduces average waiting time by 28%, improves throughput by
21%, and decreases CO, emissions by 16% compared to
traditional fixed-time control. These results indicate that ARL
is a promising direction for sustainable urban mobility.
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INTRODUCTION
Traffic congestion remains a major challenge in modern
cities. Static and semi-adaptive systems, though efficient

LITERATURE REVIEW:
Recent studies have applied RL to traffic management
with varying degrees of success. Van der Pol and

under predictable patterns, cannot cope with stochastic
variations in vehicle density. Reinforcement Learning
(RL) provides a self-learning framework where an agent
interacts with its environment, receives feedback, and
learns an optimal policy.

This research introduces an Adaptive Reinforcement
Learning (ARL) framework capable of dynamically
tuning parameters according to real-time changes,
ensuring stable and efficient control even under
uncertain traffic conditions

Oliehoek (2016)demonstrated that Deep Q-Networks
(DQN) outperform traditional Q-learning in non-linear
traffic environments. Wei et al. (2018) introduced
CoLight, a multi-agent RL approach for signal
coordination. However, these methods often struggle
with scalability and adaptability. Adaptive frameworks,
as discussed by Genders and Razavi (2019), attempt to
balance learning speed and stability.

This paper builds upon these foundations by
incorporating adaptive reward functions and policy
update rates that self-adjust according to congestion
intensity.

METHODOLOGY:
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Problem Formulation

Each traffic intersection is modeled as an RL agent. The state (S) includes queue lengths, waiting times, and neighboring
intersection statuses. The action (A) represents the green-light duration for each lane direction. The reward (R) penalizes
vehicle delays and rewards higher throughput.

Adaptive Reinforcement Learning Model

Qri1(s,a) = Qu(s,a) + aufr + ymax Qu(s', a) — Qi(s, a))
Where a; changes dynamically based on traffic variance:

ar = og(l + B - Var(Traffic))

The ARL model modifies traditional Q-learning using an adaptive learning rate (o) and reward scaling:

Simulation Setup
. Tool Used: SUMO (Simulation of Urban MObility)
. Network: 4x4 intersection grid
. Vehicle Input: 500-1500 vehicles/hour/lane
. Comparison: Fixed-time, Conventional Q-Learning, Proposed ARL

Results and Analysis

Model Avg. Waiting Time (s) Throughput (veh/hr) CO: Emission (g/km)
Fixed-Time 72.4 820 140.6
Q-Learning 56.8 960 126.3
ARL (Proposed) |52.1 1160 118.0

Table 1: Performance comparison of traffic control methods.

Analysis:

As shown in Table 1, the proposed ARL method achieves a 28% reduction in waiting time compared to fixed-time control
and 8% improvement over conventional Q-Learning. Figure 1 (below) shows the cumulative reward convergence,
demonstrating faster stabilization with ARL due to dynamic adaptation.
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Figure 1: Average Waiting Time by Model
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Figure 2: Throughput Comparison
Throughput Comparison
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Figure 3: CO; Emission by Model
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Figure 4: Cumulative Reward Convergence Curve
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Cumulative Reward Convergence Curve
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DISCUSSION:

The results confirm that adaptability in learning rate and
reward scaling enhances convergence speed and
performance stability. Unlike static RL, ARL maintains
efficiency during unexpected traffic surges. The
scalability to larger networks is promising, though
further optimization is needed to reduce computational
cost in multi-agent scenarios.

CONCLUSIONS:
This study demonstrates that Adaptive Reinforcement
Learning significantly improves traffic flow and reduces
congestion. Future work will focus on:

. Multi-intersection cooperative learning.

. Integration with real-time 10T sensor data.
Deployment on edge-Al platforms for real-time
inference.
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