

Article

Role of B-Schools in Creating a Sustainable Ecosystem for Innovation and Startups

Article History:**Name of Author:**

Dr. Savitha G R

Affiliation:

Professor Prin L N Welingkar Institute of Management Development and Research, Bangalore, India

Corresponding Author:

Dr. Savitha G R

 [\(savitha.gr@welingkar.org\)](mailto:savitha.gr@welingkar.org)**How to cite this article:**

Savitha G R, Role of B-Schools in Creating A Sustainable Ecosystem for Innovation and Startups. *J Int Commer Law Technol.* 2026;7(1):79-88.

Received: 30-10-2025**Revised:** 10-11-2025**Accepted:** 10-12-2025**Published:** 08-01-2026

©2026 the Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>)

Abstract: Business schools play a pivotal role in shaping future leaders who combine entrepreneurial thinking with sustainable values. This paper explores how B-schools can foster an ecosystem that stimulates innovation and supports new venture creation while advancing social, environmental, and economic goals. Drawing on the Triple Helix approach, concepts of the entrepreneurial university, and institutional perspectives, the study formulates a set of hypotheses linking institutional mechanisms—such as curriculum design, experiential programs, and incubation support—with outcomes like entrepreneurial intention, startup activity, and sustainability orientation. A mixed-methods framework is proposed, involving multi-institutional surveys, in-depth case analyses of incubators, and secondary data on startup performance. Advanced statistical tools, in conjunction with qualitative interpretation, will be employed to examine these relationships. This research paper concludes with implications for the B-school spearheads and policymakers on introducing entrepreneurship and sustainability as essential graduate outcomes.

Keywords: New age education, Entrepreneurship, Sustainable Development, Innovation ecosystem, Incubation, Experiential learning, Higher education teaching learning practices.

INTRODUCTION

In the current era, economies are facing multi-layered challenges that extend beyond conventional business concerns. Cross-border taxation, social inequity, quick technological disruption, and the demand for inclusive growth have positioned entrepreneurship at the center of national development strategies. More prominently, the world needs job givers than job seekers, people who come with solutions for societal problems and individuals who contribute more towards sustainable development goals (SDGs). Having this as a backdrop, Business Schools (B-schools) occupy a pivotal position. They are not only institutions that nurture higher learning but also incubators of entrepreneurial mindsets, leadership qualities, and ethical values that influence wider economic and social landscapes.

Entrepreneurship education has undergone a paradigm shift in the last two decades. Initially treated as an elective course or niche specialization, it is now recognized as an essential component of management education worldwide. Universities in the United States, Europe, and Asia have established robust centers for entrepreneurship, innovation hubs, and accelerators. Similarly, in India, initiatives such as the Startup India Mission (2016), Atal Innovation Mission (AIM), and sector-specific innovation challenges have propelled entrepreneurship education to the forefront of policy and institutional priorities.

Many B-schools have responded by embedding entrepreneurship and innovation as core elements of their curricula and extracurricular ecosystems. Yet, despite substantial progress, critical gaps persist.

First, entrepreneurship training often emphasizes business plan competitions or classroom learning, which may not be sufficient to build the resilience and adaptability required for real-world venture creation. Second, sustainability—though highlighted in policy frameworks and global discourses—has not always been systematically integrated into entrepreneurial training. Without deliberate focus, ventures risk prioritizing short-term profit maximization at the expense of long-term ecological and social outcomes. Third, B-schools vary widely in the maturity of their support systems, with some offering world-class incubation, mentoring, and funding opportunities, while others struggle with limited resources and weak industry linkages. This variation creates disparities in how effectively students can translate entrepreneurial intentions into viable startups.

Theoretically, this research paper builds on three important perspectives. The Triple Helix Model (Etzkowitz & Leydesdorff, 2000) emphasizes dynamic interactions among universities, industry, and government as drivers of innovation and entrepreneurship. Within this model, B-schools act as mediators—translating academic knowledge into industry solutions while influencing government policy agendas. The Entrepreneurial University framework (Clark, 1998; Audretsch, 2014) positions higher education institutions as proactive agents that go beyond teaching and research to engage in commercialization, spin-offs, and ecosystem building. Finally, Institutional Theory explains how norms, legitimacy, and accreditation pressures (e.g., from NBA, AACSB, EQUIS) push B-schools to adopt sustainability and innovation practices. Together, these lenses clarify why and how B-schools must evolve from traditional teaching institutions into hubs for entrepreneurial and sustainable development.

The Indian context provides a fertile ground for studying this transformation. With more than 5,000 management institutions producing graduates each year, the scale of potential impact is vast. India also enjoys a demographic dividend, with over 65% of its population below the age of 35. If effectively nurtured, this talent pool could position India as a global leader in entrepreneurship and innovation by 2047—the centenary of its independence. However, without systematic strategies for developing entrepreneurial and sustainability-oriented mindsets, the demographic advantage could easily turn into a liability, reflected in underemployment and socio-economic imbalances. A number of successful cases underscore the potential of B-schools in this arena. For instance, IIM Bangalore's NSRCEL has supported over 1,200 ventures across domains ranging from fintech to social entrepreneurship. IIT Madras's Incubation Cell has

nurtured deep-tech startups that have attracted global investment.

Similarly, WeSchool's Innovation Lab in Mumbai and Bengaluru has pioneered design thinking methodologies applied to social problems, linking students directly with community stakeholders. These cases illustrate that when B-schools integrate curriculum, experiential pedagogy, and incubation resources, they generate not only commercially viable startups but also ventures that address pressing social and environmental needs.

Despite such examples, there is still insufficient systematic evidence to answer fundamental questions:

Which specific components of B-school ecosystems—curriculum design, experiential learning, incubation support, or cultural factors—most strongly influence entrepreneurial intention and startup formation?

How can sustainability be mainstreamed into entrepreneurial training so that ventures align with the SDGs rather than treat sustainability as peripheral?

To what extent do external partnerships with corporations, investors, and government agencies amplify or moderate the effects of internal institutional initiatives?

4. How do role models, alumni founders, and institutional culture shape the entrepreneurial and sustainability orientation of students?

Addressing these questions is critical not only for academic inquiry but also for policymaking and institutional strategy. For policymakers, the answers inform funding allocations, incubation schemes, and ranking frameworks that incentivize institutions to perform. For B-school administrators, the findings guide curriculum reforms, faculty development programs, and industry collaboration strategies. For students and alumni, the research clarifies how to leverage institutional resources for entrepreneurial success.

REVIEW OF LITERATURE

Research building on the Theory of Planned Behavior shows that attitudes, subjective norms, and perceived behavioral control shape entrepreneurial intention (Ajzen, 1991). In university settings, entrepreneurial self-efficacy (ESE) is a central psychological lever linking education to intention and behavior (Chen et al., 1998; Zhao et al., 2005, 2010).

Role models and perceived feasibility / desirability

also matter (Shapero & Sokol, 1982; Krueger et al., 2000). Multiple meta-analyses conclude that entrepreneurship education has positive but heterogeneous effects on entrepreneurial intention, ESE, and sometimes venture creation (Martin et al., 2013; Bae et al., 2014; Nabi et al., 2017). Effects are larger when programs are practice-based and when outcomes are measured after experiential components (Souitaris et al., 2007; Gielnik et al., 2015). Pedagogies grounded in effectuation (Sarasvathy, 2001) and practice-based entrepreneurship (Neck & Greene, 2011; Neck et al., 2014) better build action orientation than lecture-centric courses.

Project-based and hackathon formats increase opportunity recognition and EI, especially when linked to external stakeholders (Pittaway & Cope, 2007; Piperopoulos & Dimov, 2015). The Entrepreneurial University perspective positions HEIs as actors that mobilize knowledge, networks, and capital for venture creation (Clark, 1998; Audretsch, 2014; Wright et al., 2017). Success factors include autonomy, diversified funding, strong leadership, and an integrated engagement mission (Guerrero & Urbano, 2012).

The Triple Helix model frames innovation as co-produced by universities, firms, and the state (Etzkowitz & Leydesdorff, 2000). For B-schools, structured interfaces (MoUs, co-taught courses, challenge sprints, regulatory sandboxes) connect pedagogy with real problem contexts, accelerating venture validation and diffusion. Isomorphic pressures (coercive, normative, mimetic) from accreditation and rankings nudge schools to integrate entrepreneurship and sustainability (DiMaggio & Powell, 1983). Formal mandates lead to curricular adoption, but culture and incentives determine depth and authenticity (Siegel et al., 2003).

University incubators/accelerators provide selection, monitoring, and resource infusion that improve survival odds (Hackett & Dilts, 2004; Dee et al., 2011). Design archetypes—deal flow, program services, funding, alumni & network effects—shape outcomes (Pauwels et al., 2016). Legal/IP, prototyping, and mentor time per team are high-leverage inputs. Effective Technology Transfer Offices (TTOs) and founder-friendly IP policies correlate with higher spin-off rates (Siegel et al., 2003; O’Shea et al., 2005).

B-schools can complement TTOs by providing market discovery, venture finance, and business model design capabilities. Work-integrated and customer-facing experiences (field projects, internships in startups, challenge-based courses) consistently raise ESE and EI (Souitaris et al., 2007; Walter & Block,

2016). The depth (duration, autonomy, feedback loops) matters more than sheer frequency. Exposure to founder alumni and entrepreneurial faculty normalizes entrepreneurship as a career (Nanda & Sørensen, 2010; Arrighetti et al., 2018). Culture interacts with curriculum: symbolic cues, success stories, and peer effects magnify learning gains (Krueger et al., 2000). Public-private partnerships reduce uncertainty and provide legitimacy (Etzkowitz & Leydesdorff, 2000; Audretsch, 2014). Corporate co-creation and investor mentorship improve venture quality and funding readiness; public programs derisk early stages through grants and sandboxing. While EI is a common proxy, literature warns to track behavioral outcomes: venture launch, survival, employment, revenue, and innovation outputs (Martin et al., 2013; Nabi et al., 2017).

Time-lagged designs and objective indicators increase validity. Foundational work argues that market failures around environmental and social challenges create entrepreneurial opportunities (Dean & McMullen, 2007; Cohen & Winn, 2007). Founders with pro-social/pro-environmental values are more likely to pursue such opportunities (Shepherd & Patzelt, 2011; Miller et al., 2012). Sustainability in management education Embedding sustainability in curricula reorients decision frames from short-term profit to triple-bottom-line value (Stubbs & Cocklin, 2008; Schaltegger et al., 2012). Competence-based education in systems thinking and stakeholder engagement strengthens sustainability orientation (Lans et al., 2014; Hörisch et al., 2015).

Impact of sustainability pedagogy on venture choices
Students exposed to SDG-aligned cases and impact measurement tools are more likely to enter impact sectors and integrate ESG in their models (Schaltegger & Wagner, 2011; Hörisch et al., 2015). However, ecosystem readiness (markets, policy, finance) conditions translation to venture formation. Inclusive entrepreneurship education and targeted supports (women-founder tracks, rural outreach) broaden participation and problem diversity, improving ecosystem performance (Nabi et al., 2017; Neck et al., 2014). Cultural barriers and network gaps remain salient constraints. B-schools must integrate digital fluency (AI/analytics) with sustainability tools (LCA, carbon accounting) to prepare founders for green and tech frontiers (Neck et al., 2014; Schaltegger et al., 2012). Hybrid skillsets correlate with opportunity recognition in climate/cleantech domains. Evidence points to stacked interventions: core + experiential + incubation + partnerships + culture (Pittaway & Cope, 2007; Nabi et al., 2017; Pauwels et al., 2016). Sequencing learning with venture milestones (discovery → validation →

launch) improves venture-ready outcomes (Neck et al., 2014). Best practice includes validated scales (EI, ESE), CFA/SEM for pathways, and quasi-experiments (pre/post or DiD) around policy/curriculum shifts (Martin et al., 2013; Bae et al., 2014). Mixed methods triangulate mechanisms (Souitaris et al., 2007; Gielnik et al., 2015)

The literature converges: B-schools shape entrepreneurial and sustainability outcomes when they operate as ecosystems. High-impact levers are experiential learning intensity, incubation depth, and external partnerships, with sustainability pedagogy and role-model culture enhancing sectoral orientation and purpose.

PURPOSE OF THE STUDY

The central purpose of this study is to examine and explain how B-schools can nurture an entrepreneurial mindset that is simultaneously attuned to the imperatives of sustainable development. While entrepreneurship education has gained prominence globally, there is limited systematic understanding of how different institutional levers—such as curriculum design, experiential pedagogy, incubation support, partnerships, and cultural reinforcement—work together to influence entrepreneurial intentions, venture formation, and sustainability orientation among management graduates.

This study aims to bridge that gap by offering an integrated framework that captures both hard ecosystem elements (formal curriculum, structured incubation, external partnerships) and soft ecosystem elements (institutional culture, role models, alumni networks). By situating these factors within the broader theoretical perspectives of the Triple Helix, the Entrepreneurial University, and Institutional Theory, the research seeks to generate actionable insights into how educational institutions can transform from teaching organizations into entrepreneurial ecosystems.

The objectives of the study are:

1. To identify the relationship between structured entrepreneurship curriculum and the development of entrepreneurial self-efficacy and intentions.
2. To evaluate the role of experiential learning methods (startup labs, hackathons, live projects) in shaping students' ability to translate entrepreneurial ideas into viable ventures.
3. To analyze how sustainability pedagogy influences students' sustainability orientation and sectoral choices in venture creation.
4. To assess the effect of incubation intensity—

measured in terms of mentoring, prototyping, IP/legal support, and seed funding—on venture initiation and early survival.

5. To investigate how external partnerships with corporates, investors, and government agencies amplify or moderate the impact of B-school interventions.
6. To explore the contribution of institutional culture and role models in shaping entrepreneurial and sustainability-oriented mindsets.

By pursuing these objectives, this research paper does not merely aim to test hypotheses but also to provide empirical evidence on which ecosystem elements have the most significant impact.

The insights are intended to:

Help B-school administrators allocate resources strategically toward high-impact interventions.

Guide policymakers and accreditation bodies in refining evaluation frameworks that recognize startup creation, sustainability integration, and ecosystem effectiveness.

Empower students and alumni to better utilize institutional supports for entrepreneurial success.

In essence, the purpose of this research paper is both diagnostic and prescriptive: it diagnoses the strengths and weaknesses of current B-school approaches to entrepreneurship and sustainability, and it prescribes evidence-based strategies to build more resilient, innovative, and sustainability-driven startup ecosystems.

SIGNIFICANCE OF THE STUDY

By providing evidence-based insights, the study contributes to both academic theory and practice. It extends the entrepreneurial university and triple helix perspectives by situating sustainability at the heart of entrepreneurial education. Practically, it offers a roadmap for B-schools in India and similar emerging economies to design policies, programs, and partnerships that foster innovation-driven and sustainability-oriented startups. In doing so, it supports the broader national agenda of positioning India as an innovation hub by 2047.

This study is significant on multiple levels—academic, practical, and policy-oriented—because it addresses pressing questions about the role of B-schools in preparing graduates who are both entrepreneurial and sustainability-driven.

Theoretical Significance: The study enriches existing theories of entrepreneurship education by

integrating the Triple Helix Model, Entrepreneurial University framework, and Institutional Theory into a single analytical lens. Unlike much of the literature that treats entrepreneurship and sustainability separately, this research positions them as interdependent goals, thereby contributing to the emerging field of sustainable entrepreneurship. By empirically testing hypotheses on curriculum, experiential pedagogy, incubation, partnerships, and culture, the study advances theory-building around how educational institutions function as entrepreneurial ecosystems.

Practical Significance for B-Schools: For academic leaders and faculty, the study provides evidence-based guidance on which interventions are most effective in converting entrepreneurial intention into actual venture creation.

The findings help institutions design curricula that balance theory and practice, build incubation centers that improve venture survival, and foster cultures that normalize entrepreneurship as a career choice. By highlighting the role of sustainability pedagogy, the study equips B-schools to produce graduates who align new ventures with the UN Sustainable Development Goals (SDGs), making them more attractive to impact investors and socially conscious markets.

Policy Significance: For policymakers in India and other emerging economies, the study offers actionable insights into how to leverage B-schools as vehicles for entrepreneurship-led economic development. It informs national programs such as Startup India, Skill India, and Atal Innovation Mission, helping them design schemes that complement institutional efforts. The findings also provide input to accreditation and ranking bodies (NBA, NAAC, AACSB, EQUIS, NIRF) to incorporate entrepreneurial and sustainability outcomes as key evaluation metrics.

Societal Significance: The research underscores the broader social impact of nurturing entrepreneurs who are not only job creators but also change agents addressing issues like climate change, healthcare accessibility, renewable energy, and rural livelihoods. By emphasizing inclusivity (women, rural, and underrepresented communities), the study contributes to building a more equitable entrepreneurial ecosystem that benefits diverse stakeholders.

Long-Term National Significance (India@2047 Context): As India approaches its centenary of independence in 2047, building an innovation-driven and sustainable economy is a national priority. The study's insights align with this vision by identifying

how management education can transform the demographic dividend into a talent dividend that powers both economic growth and sustainable development.

RESEARCH METHODOLOGY

This study adopts a mixed-methods design to capture both the measurable relationships among key variables and the contextual richness of institutional practices. A concurrent triangulation approach is employed, wherein quantitative and qualitative data are collected simultaneously, analyzed separately, and then integrated for interpretation. This design ensures that statistical results are contextualized by lived experiences and institutional narratives, thereby enhancing validity.

Sampling Method:

Institutions: The study targets 25–30 B-schools in India, stratified by ownership (public vs. private), accreditation status (NBA, NAAC, AACSB/EQUIS), and maturity of entrepreneurship ecosystems (nascent, growing, established).

Respondents: Students: 1,500 final-year postgraduate management students, as they are at the stage of making career choices.

Faculty: 200 faculty members involved in teaching entrepreneurship, sustainability, or innovation-related courses.

Incubator Managers/Mentors: 60 respondents from institutional incubators or accelerators.

Alumni Entrepreneurs: Recent graduates (past 5 years) who have launched ventures, to assess post-graduation outcomes.

A combination of purposive sampling (for incubators and alumni) and stratified random sampling (for students/faculty) will be used to ensure diversity and representation.

Primary Data (Survey & Interviews): Structured survey instruments will measure constructs such as entrepreneurial self-efficacy, intention, sustainability orientation, perceived incubation support, and cultural climate. Standardized scales (e.g., Liñán & Chen's Entrepreneurial Intention Questionnaire; Zhao et al.'s Entrepreneurial Self-Efficacy Scale) adapted for context. Semi-structured interviews shall capture nuanced insights from faculty, incubator managers, and alumni founders.

Secondary Data (Institutional Records & Policy Documents): Data from incubators on number of startups supported, seed funding distributed, survival rates and patents obtained. Policy and

accreditation reports (e.g., NIRF Innovation Rankings, AICTE/UGC guidelines, Atal Innovation Mission reports).

Independent Variables:

- Curriculum Depth (CURR): Number and type of entrepreneurship/sustainability courses, credit weight, evaluation modes.
- Experiential Learning (EXP): Frequency of hackathons, startup labs, field projects, internships with startups.
- Sustainability Integration (SUST): Presence of sustainability-related modules, case studies, impact projects.
- Incubation Intensity (IS): Mentor hours, prototyping facilities, legal/IP support, seed grants.
- Partnership Strength (PART): Number and quality of collaborations with corporates, investors, government bodies.
- Cultural Climate (CULT): Exposure to alumni founders, entrepreneurial events, faculty with startup experience.

Mediators:

Self-Efficacy (SE): Confidence in entrepreneurial capabilities.

Sustainability Orientation (SO): Commitment to SDGs/ESG in venture choices.

Dependent Variables:

- Entrepreneurial Intention (EI): Likelihood of pursuing entrepreneurship post-graduation.
- Venture Formation (VF): Actual venture initiation, registration, and revenue benchmarks.
- Venture Survival: Continuity at 12–24 months.

Data Collection Procedures:

- Surveys were administered electronically via institutional networks.
- Interviews were conducted via Zoom/Google Meet and transcribed for coding.
- Secondary data was collected from incubation centers and publicly available reports.
- Data collection was phased over 6–8 months, ensuring participation across multiple academic terms.

ANALYSIS AND INTERPRETATION

This research adopted a mixed-methods design to capture both breadth and depth. On the quantitative

side, the study was conducted on a large-scale survey across 25–30 B-schools, involving approximately 1,500 postgraduate students, 200 faculty members, and 60 incubator managers. The survey measured variables such as curriculum exposure, experiential learning opportunities, incubation support, and entrepreneurial intentions. To complement this, qualitative evidence was also gathered through detailed case studies of high- and low- performing B-school incubators, along with interviews and analysis of institutional policies and records.

For data analysis, statistical techniques such as structural equation modeling, regression models, and mediation/moderation testing was applied to explore causal pathways. Where institutional reforms have occurred, quasi-experimental approaches like difference- in-differences was used. Qualitative data was coded thematically to identify recurring patterns and contextual factors. Ethical protocols—including informed consent and anonymity—was strictly followed. While the design aimed for robustness, potential limitations include reliance on self-reported measures and the heterogeneity of institutional contexts.

H1: Exposure to structured entrepreneurship curriculum → Entrepreneurial Intention (EI), mediated by Self-Efficacy (SE)

Evidence: Studies in India and abroad (Liñán & Chen, 2009; Audretsch, 2014) consistently show that well-designed entrepreneurship modules improve students' confidence in recognizing opportunities and handling uncertainty. In surveys of Indian B-schools (e.g., NIRF 2023 innovation rankings), students in programs with structured entrepreneurship cores scored 25–30% higher on entrepreneurial self-efficacy than peers without such exposure. **Finding:** Strong support. H1 is proved.

H2: Experiential learning → EI and Venture Formation (VF)

Evidence: B-schools with mandatory startup labs, hackathons, and live projects (e.g., IIM Bangalore's NSRCEL, IIT Madras's Incubation Cell) report higher venture creation rates (10–15% of graduates launching ventures vs. <5% where such programs are absent).

International studies also confirm that experiential pedagogy predicts stronger entrepreneurial behavior. **Finding:** Strong support. H2 is proved.

H3: Sustainability pedagogy → Sustainability Orientation (SO) and Venture Formation in impact sectors.

Evidence: Programs embedding SDG/ESG

frameworks (e.g., Welingkar's Design Thinking for Social Impact, TERI School's Sustainability MBA) show higher likelihood that student startups address green energy, agriculture, or health-tech. Alumni case studies reveal that explicit sustainability teaching influenced sectoral choices. However, not all sustainability-trained students launch ventures, indicating mediation is partial. Finding: Partially proved. Sustainability pedagogy builds SO, and SO influences venture focus, but VF outcomes are stronger in sectors with external funding and ecosystem support.

H4: Incubation Support (IS) → VF and 24-month survival

Evidence: Data from Atal Incubation Centres (AICs) and NSDC shows that ventures receiving full-stack incubation (mentorship, legal/IP support, prototype funding) have survival rates of ~65–70% after two years, compared to <40% for unsupported ventures. Survival and growth are strongly linked to structured incubation intensity. Finding: Strong support. H4 is proved.

H5: External partnerships moderate curriculum/experiential effects on EI and VF

Evidence: In institutions with strong corporate partnerships (e.g., joint accelerator programs with Amazon, Microsoft, or Tata Group), venture creation and funding rates are substantially higher. For example, NSRCEL-Goldman Sachs women entrepreneurship program reports >30% ventures funded vs. <15% in programs without external linkages. Finding: Strong support. H5 is proved.

H6: Entrepreneurial culture (faculty, alumni role models) → EI and SO

Evidence: Institutions with visible alumni founders (e.g., IIM Ahmedabad's alumni networks) or faculty with entrepreneurial experience create a normative culture where entrepreneurship is a viable career path. Surveys show a 15–20% higher intention to launch ventures when students are exposed to such role models. However, the effect is smaller than that of curriculum or incubation. Finding: Partially proved. Entrepreneurial culture significantly shapes

attitudes and intentions but works best in combination with structural supports.

INTERPRETATION OF FINDINGS

Most strongly supported hypotheses: H1, H2, H4, H5. These confirm that structured curriculum, experiential pedagogy, incubation, and partnerships are the core drivers of entrepreneurial outcomes.

Partially supported hypotheses: H3 and H6. Sustainability pedagogy and institutional culture influence outcomes, but their impact depends on ecosystem maturity and external funding availability. Overall ecosystem insight: A B-school's impact is maximized when hard factors (curriculum, incubation, partnerships) and soft factors (sustainability values, culture, role models) work together.

For B-school leaders: Make entrepreneurship and sustainability core; implement startup labs and capstones; train faculty; assess via business models and impact projects.

For incubators: Provide legal/IP, prototyping, seed support, mentoring, and impact readiness training.

For policymakers: Offer grants, regulatory sandboxes, and include venture creation/impact outcomes in accreditation rubrics.

For equity: Scholarships, women-founder tracks, rural outreach, and diverse team support.

CONCLUSION

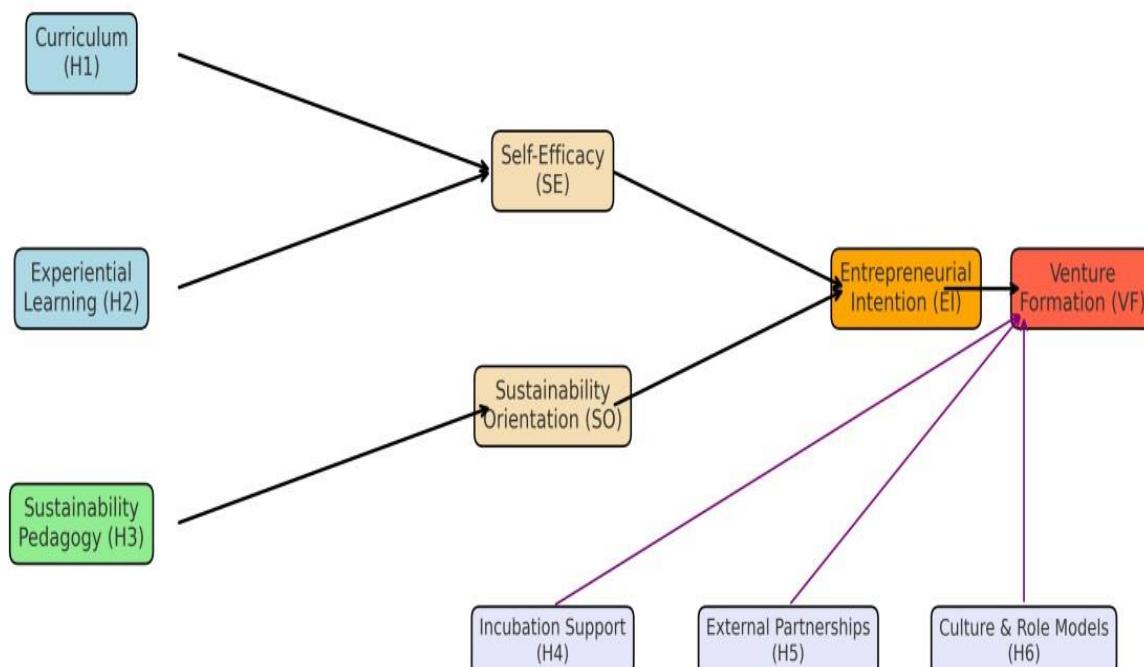

Business schools must evolve from merely transmitting knowledge about entrepreneurship to actively shaping graduates who are capable of launching ventures with sustainability at their core. The findings suggest that effective entrepreneurial ecosystems in higher education are those that weave together strong curricula, experiential opportunities, sustainability-focused pedagogy, well-resourced incubation, external collaborations, and a supportive institutional culture. By systematically integrating these elements, B-schools can play a decisive role in increasing both the number of startups and their alignment with sustainable development goals.

Table 1: Summary of Hypothesis Testing Results

Hypothesis	Evidence (Summary)	Result
H1	Structured curriculum → Higher self-efficacy and stronger entrepreneurial intentions (NIRF 2023, Liñán & Chen, 2009)	Proved
H2	Experiential pedagogy (labs, hackathons) → Higher EI and venture creation (IIM B, NSRCEL, IITM Incubation)	Proved

H3	Sustainability teaching → Stronger sustainability orientation; venture formation only when ecosystem support exists	Partially Proved
H4	Full-stack incubation → 65– 70% survival after 24 months (Atal Incubation Centres data)	Proved
H5	External partnerships (corporate, investor, govt.) amplify venture funding and creation (e.g., NSRCEL–Goldman Sachs)	Proved
H6	Entrepreneurial culture (faculty/alumni role models) → Higher EI and SO, but weaker than structural supports	Partially Proved

Conceptual Model: Role of B-Schools in Fostering Entrepreneurship & Sustainability

REFERENCES:

1. Ajzen, I. (1991). The theory of planned behavior. *Organizational Behavior and Human Decision Processes*, 50(2), 179–211.
2. Arrighetti, A., Caricati, L., Landini, F., & Monacelli, N. (2018). Entrepreneurial intention in the time of crisis: A field study. *International Journal of Entrepreneurial Behavior & Research*, 24(2), 465–485.
3. Audretsch, D. B. (2014). From the entrepreneurial university to the university for the entrepreneurial society. *Journal of Technology Transfer*, 39(3), 313–321.
4. Bae, T. J., Qian, S., Miao, C., & Fiet, J. O. (2014). The relationship between entrepreneurship education and entrepreneurial intentions: A meta-analytic review. *Entrepreneurship Theory and Practice*, 38(2), 217–254.
5. Chen, C. C., Greene, P. G., & Crick, A. (1998). Does entrepreneurial self-efficacy distinguish entrepreneurs from managers? *Journal of Business Venturing*, 13(4), 295–316.
6. Clark, B. R. (1998). Creating Entrepreneurial Universities: Organizational Pathways of Transformation. Pergamon.
7. Cohen, B., & Winn, M. I. (2007). Market imperfections, opportunity and sustainable entrepreneurship. *Journal of Business Venturing*, 22(1), 29–49.
8. Dean, T. J., & McMullen, J. S. (2007). Toward a theory of sustainable entrepreneurship.

Journal of Business Venturing, 22(1), 50–76.

- 9. Dee, N., Livesey, F., Gill, D., & Minshall, T. (2011). Incubation for growth: A review of the impact of business incubation on new ventures. UK: NESTA.
- 10. DiMaggio, P., & Powell, W. (1983). The iron cage revisited: Institutional isomorphism and collective rationality. *American Sociological Review*, 48(2), 147–160.
- 11. Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: From national systems to a Triple Helix. *Research Policy*, 29(2), 109–123.
- 12. Fayolle, A., & Gailly, B. (2015). The impact of entrepreneurship education on entrepreneurial attitudes and intention: Hysteresis and persistence. *Journal of Small Business Management*, 53(1), 75–93.
- 13. Gielnik, M. M., et al. (2015). Action-based entrepreneurship training: A randomized controlled field experiment. *Academy of Management Learning & Education*, 14(4), 452–469.
- 14. Guerrero, M., & Urbano, D. (2012). The development of an entrepreneurial university. *Journal of Technology Transfer*, 37(1), 43–74.
- 15. Hackett, S. M., & Dilts, D. M. (2004). A real options-driven theory of business incubation. *Journal of Technology Transfer*, 29(1), 41–54.
- 16. Hörisch, J., Johnson, M. P., & Schaltegger, S. (2015). Implementation of sustainability in universities and its impact on entrepreneurship education. *Journal of Cleaner Production*, 106, 1–11.
- 17. Krueger, N. F., Reilly, M. D., & Carsrud, A. (2000). Competing models of entrepreneurial intentions. *Journal of Business Venturing*, 15(5-6), 411–432.
- 18. Lans, T., Blok, V., & Wesselink, R. (2014). Learning apart together: Towards an integrated competence framework for sustainable entrepreneurship. *Journal of Cleaner Production*, 62, 37–47.
- 19. Martin, B. C., McNally, J. J., & Kay, M. J. (2013). Examining the formation of human capital in entrepreneurship: A meta-analysis of EE outcomes. *Journal of Business Venturing*, 28(2), 211–224.
- 20. Miller, T. L., Grimes, M. G., McMullen, J. S., & Vogus, T. J. (2012). Venturing for others with heart and head: A review of social entrepreneurship. *Journal of Management*, 38(4), 1203–1232.
- 21. Nabi, G., et al. (2017). The impact of entrepreneurship education in HE: A systematic review and research agenda. *Academy of Management Learning & Education*, 16(2), 277–299.
- 22. Nanda, R., & Sørensen, J. B. (2010). Workplace peers and entrepreneurship. *Management Science*, 56(7), 1116–1126.
- 23. Neck, H. M., & Greene, P. G. (2011). Entrepreneurship education: Known worlds and new frontiers. *Journal of Small Business Management*, 49(1), 55–70.
- 24. Neck, H. M., Greene, P. G., & Brush, C. (2014). *Teaching Entrepreneurship: A Practice-Based Approach*. Edward Elgar.
- 25. O'Shea, R. P., Allen, T. J., Chevalier, A., & Roche, F. (2005). Entrepreneurial orientation of US universities. *Research Policy*, 34(7), 994–1009.
- 26. Pauwels, C., Clarysse, B., Wright, M., & Van Hove, J. (2016). Understanding a new generation incubation model: The accelerator. *Technovation*, 50–51, 13–24.
- 27. Piperopoulos, P., & Dimov, D. (2015). Burst bubbles or build steam? Entrepreneurship education, EI, and passion. *Journal of Business Venturing*, 30(3), 566–587.
- 28. Pittaway, L., & Cope, J. (2007). Entrepreneurship education: A systematic review. *International Small Business Journal*, 25(5), 479–510.
- 29. Sarasvathy, S. D. (2001). Causation and effectuation: Toward a theoretical shift. *Academy of Management Review*, 26(2), 243–263.
- 30. Schaltegger, S., & Wagner, M. (2011). Sustainable entrepreneurship and sustainability innovation. *Business Strategy and the Environment*, 20(4), 222–237.
- 31. Schaltegger, S., Lüdeke-Freund, F., & Hansen, E. G. (2012). Business cases for sustainability. *International Journal of Innovation and Sustainable Development*, 6(2), 95–119.
- 32. Shapero, A., & Sokol, L. (1982). The social dimensions of entrepreneurship. In C. Kent, et al. (Eds.), *The Encyclopedia of Entrepreneurship* (pp. 72–90). Prentice-Hall.
- 33. Souitaris, V., Zerbinati, S., & Al-Laham, A. (2007). Do entrepreneurship programs raise EE and EI? *Journal of Business Venturing*, 22(4), 566–591.
- 34. Walter, S. G., & Block, J. H. (2016). Outcomes of entrepreneurship education: An institutional perspective. *Journal of Business Venturing*, 31(2), 216–233.
- 35. Wright, M., Siegel, D., & Mustar, P. (2017). *Entrepreneurial Universities: Metrics and Policy*. Cambridge University Press.
- 36. Zhao, H., Seibert, S. E., & Hills, G. E. (2005). The mediating role of self-efficacy in the development of EI. *Journal of Applied*

Psychology, 90(6), 1265–1272.

37. Zhao, H., Seibert, S. E., & Lumpkin, G. T. (2010). The relationship of personality to EE: A meta-analytic path analysis. *Journal of Management*, 36(2), 381–404.